

Haosheng Wang

Providence, RI, 02903 | 6469230226 | hswang947@gmail.com | <https://wonder947.com>

EDUCATION

Brown University , Providence, RI	<i>Master of Science in Computer Science</i>	<i>Sep 2024 – May 2026</i>
New York University , New York, NY	<i>Bachelor of Arts in Computer Science & Math</i>	<i>GPA: 4.0/4.0</i>
	<i>Honors: Dean's List for 3 Academic Years, Magna Cum Laude</i>	<i>Jan 2021 – May 2024</i>
		<i>GPA: 3.905/4.0</i>

WORKING EXPERIENCE

Linksome , Shenzhen, China	<i>May 2025 – Aug 2025</i>
-----------------------------------	----------------------------

AI Algorithm Intern

- Designed and implemented an ontology-driven knowledge graph RAG system for large-scale domain-specific corpora.
- Developed an autonomous pipeline that jointly constructs a KG-grounded ontology and an ontology-aligned knowledge graph, enabling structured, database-style querying.
- Proposed two complementary information retrieval mechanisms: (1) an iterative agentic search strategy, and (2) a query-decomposed graph pattern matching approach, targeting complex multi-entity, multi-hop queries.
- Evaluated the system against contemporary graph-based RAG frameworks (e.g., GraphRAG, LightRAG) in terms of cost, latency, accuracy, recall, interpretability, and scalability.

RESEARCH EXPERIENCE

Knowledge Graph Construction	<i>May 2024 – Feb 2025</i>
-------------------------------------	----------------------------

NYU Independent Research, Advisor: Dr. Hasan Aljabbouli

- Analyzed current research landscape of knowledge-graph construction (KGC) from unstructured texts, and categorized them into ontology-driven, ontology-evolving, and non-ontology KGC paradigms.
- Identified critical evaluation metrics for each KGC paradigm such as Precision, Recall, F1, hallucination rates, and entity/relation resolution.
- Designed pipelines for aggregating various NLP datasets for specific KGC paradigms, such as Wikidata, Webnlg, and NYT.

TEACHING EXPERIENCE

Brown University , Providence, RI	<i>Sep 2024 – Feb 2025</i>
--	----------------------------

- *Teaching Assistant for DATA2060: Machine Learning*
- *Teaching Assistant for CSCI1460: Computational Linguistics*

Sep 2025 – Dec 2025
Jan 2026 – May 2026

ACADEMIC PROJECTS

Soft Token Learning	<i>Sep 2025 – Dec 2025</i>
<ul style="list-style-type: none">• Investigated soft token learning as a parameter-efficient mechanism for model adaptation, targeting knowledge injection without full fine-tuning or repeated retrieval.• Proposed training entity-specific soft tokens using structured supervision from knowledge graph paths, encoding contextual semantics directly at the embedding level.• Analyzed generalization, controllability, and interference behavior, framing the approach as a neural-symbolic interface between structured knowledge and pretrained language models.	

Hopfield Networks	<i>Feb 2025 – May 2025</i>
<ul style="list-style-type: none">• Led a team of three to implement Modern Hopfield Networks (dense associative memory) in TensorFlow, adapting the PyTorch framework from ‘Hopfield Networks Is All You Need’.• Studied classical Hopfield networks through the lens of energy landscapes and convergence dynamics, and connected these principles to modern Hopfield architectures and transformer attention mechanisms.• Evaluated memory capacity, retrieval accuracy, and convergence behavior on CIFAR-10 for class-conditional image	

reconstruction.

Image Captioning

Feb 2025 – Apr 2025

- Developed an image captioning system on the Flickr8k dataset using a customized TensorFlow framework.
- Implemented an encoder–decoder architecture with ResNet-50 image encoders and RNN- or Transformer-based decoders.
- Compared RNN and Transformer decoders quantitatively and visualized attention mechanisms to analyze model behavior.

Seq2Seq Semantic Parsing

Nov 2024 – Dec 2024

- Replicated the neural attention–based semantic parsing model from “Language to Logical Form with Neural Attention,” mapping natural language utterances to executable logical forms.
- Implemented a multi-layer LSTM encoder–decoder architecture with attention applied at the decoder.
- Evaluated on the Jobs dataset, achieving over 80% exact-match accuracy within 20 training epochs.

BERT Fine-tuning

Oct 2024 – Nov 2024

- Fine-tuned a pretrained BERT model with partially frozen parameters for sentiment classification task on tweets.
- Evaluated performance against bag-of-words baselines, training-from-scratch BERT models, and full fine-tuning approaches.
- Demonstrated that parameter-efficient fine-tuning achieves comparable accuracy to full fine-tuning while reducing computation by over 40%.

Classic Information Retrieval System

Jan 2024 – Apr 2024

- Implemented an ad hoc information retrieval system using TF-IDF weighting and cosine similarity ranking.
- Applied NLP preprocessing with NLTK, including tokenization and stop-word filtering, to improve retrieval accuracy.
- Evaluated on the Cranfield Collection, achieving a mean average precision (MAP) over 30%.

Intelligent Object Detection Rover

Oct 2023 – Dec 2023

- Implemented a Python-based object detection pipeline for real-time rover perception, enabling autonomous navigation and trajectory following using the Viam platform.
- Integrated hardware and software components, including a webcam, a LiDAR sensor, and the rover platform, into a unified autonomous system.

KTV Web Server

Oct 2023 – Dec 2023

- Developed a Next.js–based web application for searching and streaming KTV song videos.
- Implemented stateless user authentication and session management using JSON Web Tokens.
- Integrated the YouTube API for video retrieval and MongoDB Atlas with Socket.io to support real-time, multi-user room interactions.

SKILLS

Programming Languages: Python, C++, Java, JavaScript, Go, Scala, SQL, Shell scripting

Machine Learning Frameworks: PyTorch, TensorFlow, Scikit-learn, LangChain, Transformers

NLP: Hugging Face Datasets, Tokenizers, NLTK, spaCy

Web Development: Node.js, React.js, Next.js, HTML, CSS, Tailwind

Databases & Distributed Computing: MongoDB, PostgreSQL, Neo4j, Hive, Spark

Tools & Platforms: Git, Linux, Docker

Language: English, Chinese